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We rederive the Coulomb expansion of the electron gas average energy at finite 
temperature, starting from scratch, i.e., using only the framework of the grand 
canonical ensemble and not the finite-T Green's function formalism. We recover 
the analytical expressions of the exchange and correlation energy in both the 
high-T and the T= 0 limits. We explicitly show the origin of the crossover of the 
correlation energy leading term from e 4 In e 2 at zero temperature t o  e 3 at finite 
T. We also discuss the relative importance of exchange and correlation in both 
limits. 

KEY WORDS: Finite-T electron gas; Coulomb expansion of the thermo- 
dynamic potential; degenerate/nondegenerate limits; exchange and correlation 
energies. 

1. INTRODUCTION 

M a n y - b o d y  effects resul t ing  from C o u l o m b  in te rac t ion  be tween  carriers 
have a roused  cons ide rab le  interest  for a long  time. They  were first s tudied 
in metals ,  in which the e lec t ron gas is a lways degenerate .  In  semiconduc-  
tors, the carr ier  densi ty  can be var ied ei ther  by d o p i n g  or  by laser i r radia-  
t ion,  so that  m a n y - b o d y  effects can  be s tudied from the nondegene ra t e  to 
the q u a n t u m  limit.  

At T = 0 ,  differents me thods  c~ 5) have been p roposed  to calcula te  the 
C o u l o m b  energy.  They  all rely on  a C o u l o m b  pe r tu rba t ive  expans ion  valid 
when  the in terpar t ic le  d i s tance  is m u c h  smal ler  t han  the Bohr  radius  
(except the M o n t e  Car lo  ca lcu la t ion  developed by Ceperley~51). This  
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perturbative treatment has been greatly simplified by the introduction 
of the Green's function formalism. 12-4) At finite temperature, the Coulomb 
energy has also been obtained from this formalism, using Matsubara's 
method, t3.6-t~) Although quite visual, this formalism contains many sim- 
plifying rules which hide some important aspects of the problem. This is 
why we find it instructive and useful to rederive the finite-temperature 
Coulomb energy from scratch, with statistical mechanics only, following 
step by step the elimination of the various irrelevant terms. 

The appropriate procedure to calculate the Coulomb energy of an 
N-electron gas in thermal equilibrium is to work in a grand canonical 
ensemble defined by a temperature T and a chemical potential p. From the 
grand partition function ~, calculated as an expansion in the Coulomb 
interaction, we derive the thermodynamic potential O, the average energy E', 
and particle number N. By imposing N = N, we find the appropriate #. We 
then calculate the exchange and correlation energies in the high-T limit, 
i.e., when the thermal length is much smaller than both the interparticle 
distance and the Bohr radius. We also rederive the well-known T = 0  
energy from the same approach. This allows us to identify clearly the origin 
of the difference between the e 3 behavior of the correlation leading term at 
finite temperature and the e 4 In e 2 behavior at T =  0. 

The paper is organized as follows: in Section 2 we give some qualitative 
arguments which help to understand the density and temperature depen- 
dences of the Coulomb energy; in Section 3 we establish the formalism and 
derive the Coulomb expansion of the thermodynamic potential at finite T; in 
Section 4 we calculate the Coulomb energy in the high-T limit; in Section 5 
we recover the T =  0 Coulomb energy using the same approach. We also 
obtain the small-T behavior of the correlation energy. 

2. QUALITATIVE DISCUSSION 

The Coulomb energy of N electrons in a volume v at the temperature 
T is controlled by three characteristic lengths: 

(i) The average distance between electrons d defined by 

4red3~3 = v / N  = l /n  

(ii) 

(iii) 
Coulomb interaction 

(2.1) 

The thermal length 2 T defined by 

xk~ T =  h2(2x/2 r)Z/2m (2.2) 

The Bohr radius a o, which is the length associated with the 

ao = h'-~o/me z (2.3) 
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The relative values of d, 2r,  and rs determine various regimes for 
which different approaches to the Coulomb energy calculation can be 
proposed (see Fig. 1). 

In the T =  0 limit ,  there is only one dimensionless parameter 

r s = d/ao (2.4) 

As r, is proportional to e 2, a Coulomb expansion of the energy appears as 
a small-r~ expansion, g (T= 0) = #r(~ o + ~t Irs + ct2r ~ + ...), where #F is the 
Fermi energy 

# F = h 2 K 2 / 2 m  = (9n/4)2/3 R o / r  2 (2.5) 

R o = me4/2h2e 2 is the Rydberg energy. However, in three dimensions the 
quadratic term as well as all higher-order terms diverge, due to the long- 
range character of the Coulomb interaction. The summation of these 
singular terms gives rise to a screening of the interaction characterized by 
a qs wavevector 

q~ = (41te2/eo) dn /d#  (2.6) 
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Fig. 1. Domains of validity of the small-r, expansion in the T = 0  limit (I) and small-p 
expansion in the high-T Boltzmann limit (1I). In I and II2 the exchange energy is larger than 
the correlation energy, while in II b the correlation energy is the largest./9 and r, are, respec- 
tively, the thermal length and interparticle distance in units of the Bohr radius. 

822/75/5-6.12 
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in which /1 has to be replaced by its T = 0  value, Pv. The corresponding 
contr ibution turns out to be propor t ional  to r~ In r~ (i.e., to e 4 In e 2) instead 

2 The T = 0  Cou lomb  energy thus reads of r s . 

k-coul(T = 0) = Ro[cdl r f  I + c~', In rs + ~2' + O(rs)]  (2.7) 

This small-r s expansion is valid for small average distance d, i.e., large 
electron density (domain I of Fig. 1). For  small density, i.e., large r ,  the 
electrons form a Wigner crystal instead of an electron gas, the Cou lomb  
interaction being dominant  in this limit. 

At finite temperature, two other dimensionless parameters  can be built 
up from the three characteristic lengths, 

p = 2r/ao = (4rtRo/ka T) 1/2 (2.8) 

which is propor t ional  to e 2, and 

a = 2 r /d  = p/r~. = (4/9x) i/3 (4x/1 v/k s T) I/2 (2.9) 

which is independent of  e 2. The parameter  tr differentiates the quan tum 
(degenerate) limit from the Bol tzmann (nondegenerate)  limit, which 
correspond to a >> 1 and ~r,~ 1, respectively. At finite T, the energy depends 
on two of these three parameters  rs, p, and or. 

Since in the h igh-T Boltzmann limit (p ,~ 1, tr ,~ 1, i.e., domain  II  of 
Fig. 1 ) the kinetic par t  of  the energy is not proport ional  to /z  F but to ks  T, 
the expansion parameter ,  propor t ional  to e 2, is no longer rs but p. We now 
expect an e 2 expansion like g ( T ) = k s T [ 3 / 2 + f l l ( a ) p + f l 2 ( a ) p 2 + . . . ] .  
Here again the quadrat ic  term diverges; the summat ion  of the singular 
terms screens out the Cou lomb  potential, the screening wavevector  being 
still given by Eq. (2.6), in which /a has to be replaced by its classical 
expression 

~r  = k s  Tin(n23~2) = k s  Tln(3a3/8rc) (2.10) 

Since the singularity of the quadrat ic  term is in fact larger at high T than 
at T = 0 ,  the resulting contr ibution is in p2p-l/2 (i.e., e 3) instead of r~ In rs 
(i.e., e 4 In e2). The average energy eventually reads 

g(T) = ks  7"[ 3/2 + f l ,(a) p + fl'z(a) p3/2 + ...] (2.11) 

The T and n dependences of g(T) depend on the tr dependence of fl, and 
fl~ for tr,~ 1. Since the first-order Cou lomb  contr ibution to the N-electron 
energy comes from exchange processes between two electrons, it must be 
proport ional  t o  N2Vk, where Vk is the Fourier  t ransform of the Cou lomb  
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potential for a characteristic momentum transfer k. In the quantum limit, 
k ~  KF, SO that N 2 V k ~  NRor~7~: The exchange energy is indeed found to 
vary as r~ -~ [see Eq. (2.7)]. In the Boltzmann limit, k ~ 2 r  ~, so that the 
exchange energy should be proportional to k 8 Tff3p, i.e., ill should vary as 
a3. The a dependence of fl~ is not so easy to predict. We will show that 
fl~ ~ t r  3/2. In terms of p and r~, the Coulomb energy gco~l(T) eventually 
reads 

gcou,(T) = R0(y,  p2/,.~ + 72p/r3/~ + ...) (2.12) 

Equation (2.12) is valid for p ,~ 1, whatever rs is. We can note that, although 
the Coulomb energy always increases with increasing carrier density, the 
high-T and T =  0 density dependences of gCou~(T) are very different. 

3. G E N E R A L  F O R M A L I S M  

3.1. T h e r m o d y n a m i c  Funct ions 

The thermodynamic quantities of a grand canonical ensemble defined 
by a temperature T and a chemical potential p are obtained from the grand 
partition function 

- ~ = T r e  -/m (3.1) 

where fl = = 1~ks T, ffI = t-I o + V, and /)o = H o -  PN, Ho being the free- 
particle Hamiltonian, N the particle number operator, and V the Coulomb 
interaction: 

v= E E E r § + (3.2) q Cp~ + q.~ C~2.~ 2 C~2 + q.~2 Cp,.~, 
q~O pl,o'l p2,o'2 

with Vq=4r te2 /%vq  2, e o being the static dielectric constant and v the 
volume of the system. 

The thermodynamic potential, average particle number, entropy, and 
energy are simply related to ~ by 

,('2 = - - k B  Tln ~, 

g = -(Of2/OT),,, 

_~= -(8Ot8~),-  
(3.3) 

For an N-electron system,, the appropriate /~ is determined by imposing 
N = N .  
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3.2. V Expansion of the Grand Partit ion Function 

To calculate 3, we can think of using the/4  eigenstates basis. 1~2~ The 
determination of the /~ eigenvalues, however, relies on a perturbative 
expansion for degenerate states, since all the /1  o eigenstates but the ground 
state are degenerate. We can avoid this quite difficult problem by using 
instead the /lo eigenstates. The V expansion of ~ then results from the V 
expansion of e -an. It is easily obtained ~3) by noting that 

eOnOe an = _eOnO Ve-On (3.4) 

so that the e -~  expansion comes simply from the iteration of 

e-an = e-~176 I~ d[3' e I -o+o'~no Ve-O'n (3.5) 

Let II) be the eigenstates of Ho and .~'; we set 

Ho I1) = ~t It), R II) = Nt II) 

= - - I  t p , a  

p,  cr 

(3.6) 

where ep = h2p2/2m and np.o~l) (=  0 or 1) are the set of filling factors defining 
II). Using these II) states, we find the zeroth- and first-order terms of the 
grand partition function 

~o = ~ (1[ e -an~ 11)= ~ e -pc' (3.7) 
I / 

~-'1 =E ( l l -  el-~+~176176 II)-= - [ 3 ~  g.e -~ (3.8) 
I / 

In the second-order term given by 

,.Ez = ~ ( lJ i~ dfl' Io~' d~" eC-a + a'~t~~ V Jl' ) ( l'J eC-P" + P"~n~ Ve- a"no [l) ( 3.9 ) 
1,1' 

we must differentiate gt = gr and g~ ~-gr cases when integrating over [3' and 
[3". It is, however, possible to include these two cases in a compact form: 

- [3 FV.:Vr~e-'~' ] 
=2= -~. .~.L gl-~r +(1.--~1') (3.10) 
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where (1,-~ l') stands for the permutation of I and 1'. Note that (g~-gr) can 
be replaced by (e~-er),  since ~r and V commute. A similar calculation 
allows us to write the third-order term as 

F V''Vrr'Vrle-ae' I'~--~1")] 
33= -~. ,.~,..L (~t_~r)(e,_~,..) +(l'-" (3.11) 

where (1+-+l'<-+ l") stands for the five 1, l', 1" permutations. [These per- 
mutations ensure that the bracket of Eq. (3.11) stays finite when er or er 
goes to et]. Higher-order terms can be calculated along the same lines, 
although their expressions are somewhat more complicated. 

3.3. V Expansion of the Thermodynamic Potential 

From Eq. (3.3) we can write the I2 expansion as 

++ I2=-kBTln3o-ksTln 1+ = O. 
lE = L / ' l = O  

(a) Using Eq. (3.7), we find for the zeroth-order term 

(3.12) 

(b) 

/20 = --kB T In 30 = --kB T ~ ln[ 1 + e-PC'p-u)] 
p ,  tr 

The first-order term deduced from Eqs. (3.8) is given by 

(3.13) 

-" 1 
Q~ = --kBT~I 2 E Vp,-p2fp,fp2 (3.14) 

~ 0  Pl  9~ P2 'O'1 

where fp= [1 +exp f l (ep- /Z)]-k  This I2~ expression is analogous to the 
usual exchange term of the T= 0 energy, the quantum distribution being 
simply replaced by the Fermi-Dirac finite-T distribution. 

(c) The second-order term 

- 1 s --kB T[~2o---~ ( ~ )  2] = I22A + I22o + s (3.15) 

can be divided into three parts. Since both I2~ and s have to be propor- 
tional to the sample volume v, the ( ~ / 3 o )  2 term of Eq. (3.15), which is 
proportional to tr 2, must be canceled by part of the (32/30) term. Extract- 
ing from 32 the l ' =  ! term, which reads 

_ l+2 
~2A = ~- ~ e -~e' V~ (3.16) 

Y 
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we find that [22A defined as 

1 
- E Vp, pz Vp _ ~,3fp, ( 1 - fp, ) fp2 fp~ (3.17) 

2ka  T a ,  pt ~ (p2.p3) 

is linear in v. The remaining part of 32, i.e., the sum over the 1' # 1 states 
(which also contains the degenerate states with er=e~), gives rise to a 
direct term [22D which reads 

4q,O v2q Z . . . . . . . .  ~ (3.18) 
- PlOlP2a2 L ep2+qJl-~pl--~p~--~'pl+q 

and an exchange term [22E obtained by replacing one factor Vq by 
( -  Vp~_e26~,,~,2). They are both linear in v. 

In the following, it will be appropriate to set 

~Op=fp(1-fp+q). Cp=fp+q(l--f,), Ap=ep+q-ep (3.19) 

This leads to 

[2 1 , I(tPP,-t-q)P,)(tPP2--~P2)_I_(I +_~2)] 
2t)=~ ~ Vql2(q), 12(q) = ~ 2(,dp_ga2 ) 

q :;~ 0 Pl ~ P2 it2 

(3.20) 

We can easily check that ~'~2A and [22E are both finite, while [22D diverges 
at low q. This unphysical infinite contribution is compensated by higher- 
order terms. Indeed, the most diverging n th-order term corresponds to n 
momentum transfers with the same q. It can be written as 

1 
[2,,O = 2---n ~ V~I,,(q) (3.21) 

q # O  

From Eq. (3.11 ) we find 

1 y, [ (q',', + Op,)(~~ ~,,2)(~~ ,, - ~p3) 
I ~ ( q )  = -~ p,,, ,  p2,,,, p , ~  ( A p ,  - Ap2)(dp,  - zip,) + (1, 2, 3) 1 (3.22) 

where (1, 2, 3) stands for the two other circular permutations of 1, 2, and 
3. Figure 2 shows the Feynman diagrams representing [22A, [22E, [2,,D as 
well as other terms of the thermodynamic potential expansion. The [2,o 
(Fig. 2d) correspond to the random phase approximation (RPA). Using 
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(d) (e) (t'3 
Fig. 2. Feynman diagrams contributing to the correlation thermodynamic potential. (a) The 
second-order direct term (s'220); (b) the second-order exchange term (I22E); (C) the g22  ̂
contribution; (d) the RPA nth-order term (12,D); (e, f) other third-order terms. Solid lines 
represent electron propagators, while wavy lines represent Coulomb interaction. 

the finite-T Green 's  function formalism, we can recover 13"8) the above 
expressions of S'22A, I22E, f220, and 030 .  For  12,, o,  we get 

1 [-(q,., + ~.,)(~,.,- ~.,)... (~o..- q~.~ ] 
I,,(q) = ~ 2 [_ (--~p ~ ~pp~] : : : ~ - ~  _--~p~ ) t - (1 ,2 ,3  ..... n) 

plaI .-.pno'n 

(3.23) 

The f2,,D summat ion  produces a finite contr ibution to 12, as physically 
expected, since it generates a low-q cutoff, equivalent to a Cou lomb  inter- 
action screening. However,  as the low-q behavior  of l,,(q) is different in the 
high-T limit and in the T = 0  limit, we must  consider these two cases 
separately. 

4. HIGH-TEMPERATURE LIMIT 

For  high-T, the Fermi distribution reduces to the Bol tzmann distribu- 
tion, f p ~ e x p [ - f l ( e p - # ) ] ,  It and T being such that  ~=etJU,g. 1. In this 
h igh-T limit, a V expansion has no meaning unless the characteristic 
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Coulomb  energy Ro is much smaller 3 than the mean kinetic energy k B T; 
this implies p = 2r/ao ,~ 1. In this small-p limit, the chemical potential /~ is 
very close to the noninteract ing gas chemical potential  /~r, Eq. (2.10), SO 
that  the condit ion ),.~ 1 is equivalent to the usual condit ion of the 
Bol tzmann limit a =  2r/d~ 1. The domain  of validity of the results of  this 
paragraph  thus corresponds to the domain  II of the (p, rs) plane (see 
Fig. 1). Note  that  the above conditions do not imply r s = d / a o  smaller 
than 1. 

4.1. T h e r m o d y n a m i c  Potent ia l  

For  7 ~ 1, the zeroth-order  potential,  Eq. (3.13), reads 

/Og2o\ 27v 
I2o= - k .  TNo, No-  -~--~ ) r ' ~ f .  ~ 2-'~r (4.1) 

where N o is the zeroth-order  mean particle number.  The first-order term, 
Eq. (3.14), can be written as 

g2~ = (1/4n) p7(20 (4.2) 

Turning to second-order  terms, we find from dimensional arguments  that  

1 ( e2 "~ 2 _ 
g22A - ~ \~o---~r j No3 -- p272120 (4.3) 

as the characteristic m o m e n t u m  scale in this limit is Kr= ) . r  ~. Since fp ~ 1, 
we can replace r by fp and q~p by fp+q in S'22D and S'22E. It is easy to check 
that  g22E stays finite in the q = 0  limit, so that, from dimensional 
arguments,  we get 

3 / e2 \2 ~ o  2 
g 2 2 E ~ V K T ~ )  hZK~/m~p27g2o (4.4) 

(the vK 3 factor comes from the sum over q). On the contrary,  O2D diverges 
for q ~ 0 .  More  precisely, in the low-q limit, q~p~(pp~fp(1-fp)= 
kTOfp/Oll while cpp-  ~p ~ Ap Ofp/Olt, so that  we get from Eq. (3.23) 

lim I,,(q)= - k T  for n>~2 (4.5) 
q~O 

3 Let us stress that the high-T limit considered here is not the usual "classical" limit in which 
h--* 0, so that CF and o"--* 0 while Ro, p, r,--* oo. In this classical limit, the first term of 
Eq. (2.12) vanishes. The second term of Eq. (2.12) is nothing but the Debye-Htickel result, 
valid in the weak-coupling limit, i.e., when e2/dkB T ~ ptr ~. 1. 
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We conclude that,  for T:/: 0, I2,D diverges as q-2"  + 2. More  precisely, we find 

vkBTC ~ ,  l ( _ q 2 " ~ "  
~'2nD ~ ~ J q- aq n q2 ] (4.6) 

where qs is given by 4 

=V4.e2 ''2 
qs L Co. Op =2pl/2yl/2Kr~KT (4.7) 

The sum of all ~r terms thus reduces to a convergent  integral  s 

~"~O = ~ ~"~nO 
n = 2  

I2 I: vkBT I d2 q2 22(q~/q 2)2 
~ 4~ 2 -~- dq 1 + 2q~/q 2 

vkBT 3 

=I2o [ ( 1 )  p3/ZT'/Z + O(p2y)] (4.8) 

12 D is p ropor t iona l  to p3/2, i.e., to e 3, and not  to e 4 like the two second- 
order  (finite) terms 122A and t22E. Other  diverging contr ibut ions  also 
appear  in the higher-order  terms. We can show that  the larger ones give a 
con t r ibu t ion  of the order  of  pyl2 D. 

Adding  the three first leading cont r ibut ions  to the the rmodynamic  
potent ial ,  Eqs. (4.1), (4.2), and (4.8), we get 

-('2 ---- --kB TNo[ 1 + (1/4n) p? + (1/3n) p3/2yt/2 _1_ O(p2y)] (4.9) 

4.2.  Average  Energy 

F r o m  O, we obta in  the average energy, using Eq. (3.3). We get 

E'(T, p)  = k s  TNo[3/2 + ( l / 4n )  py + ( l /4rt)  p3/2y~/2 + O(p2y)]  (4.10) 

4 To lowest order in p, Eq. (4.7) is identical to Eq. (2.6) and the qs cutoff reduces to the 
Debye-Hiickel screening wavevector, since in this limit N 0 = N and p =PT, as shown later. 

5 From Eq. (4.8) we can check that the dominant contribution to -Oo comes from q ~ q, ~. K r, 
so that we may use the low-q limiting values of l,(q) in the whole range of integration. 
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In order to get E'(T, N), we must calculate /~(T, N) by setting N ( p ) = N .  
F rom Eq. (4.9) we find 

N= -(Og2/Op)r=fffo[l +(1/2~)py+(1/2rt)p3/Zy~/2 +O(p27)] (4.11) 

To  zeroth order in p, N =/Vo and y = Y0 = ePur= (3a3/87r) �9 To  second order 
in p, Eq. (4.11) thus gives 

?r = N [  1 - (1/2~) PYo - (l/2rr) p3/2y~o/2 + O(p2~,o)] 

This transforms Eq. (4.10) into 

g(T)=~ Ro -~7 4n p \2n,I -p -~+O(p~ (4.12) 

Note  that  the correlation terms is exactly equal to the Debye-Hi ickel  result 
of the classical limit13'6"7"6: Indeed in this h ~ 0  limit, Eq. (4.12) reduces to 
its first and third terms. 

Since a = p / G  depends on both density and temperature,  it can be 
interesting to reexpress the average Couo lomb  energy as 

3 k2-~) ~ ' + ' O  ~s3-I- "'" (4.13) gCoul(T) = Ro 4rr r~ 

Here, the density appears  in G only, while the temperature  appears  in p 
only. Let us stress that the above equations does not result from a small-rs 
expansion, but from a small-p expansion, so that  it can be valid for r, > 1: 
the two conditions p ,~ 1 and a ,~  1 correspond to 

p=2r/ao~min(1, rs)c~ksT>>max(Ro,#v~Ro/r 2) (4.14) 

whatever rs is; so that the range of temperature  for Eq. (4.13) to be valid 
is larger for rs > 1 than for r,. < 1 (see Fig. 1 ). 

We see that the Cou lomb  energy vanishes for hot dilute carriers. This 
effect is, however, s tronger on the exchange term than on the correlation 
term: The correlation energy is the largest at very high T, i.e., for p < r~/2 
(region [Ib of Fig. 1 ). If  G > 1, this condit ion is always fulfilled in the range 
of validity of the Bol tzmann limit result. If  rs < 1, the correlation energy 
dominates  the exchange energy at very high T only [k  B T >  pV(Pv/Ro)~/2]. 
At smaller temperature  [PF < kB T< pv(lav/Ro) ~/2] (region II~ of Fig. 1 ), 
the exchange energy is the largest. This result has to be contrasted with the 
T =  0 situation in which the exchange energy is the dominant  term of the 
Cou lomb  contributions. 

6 See footnote 3. 
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5. T=O LIMIT 

The T =  0 limit of the energy expansion can of course be deduced ~3~ 
from the finite-T approach given in Section 3. This derivation is instructive, 
as it allows one to grasp the differences between the low-T and high-T 
behaviors. 

5.1.  T h e r m o d y n a m i c  P o t e n t i a l  

The zeroth-order  term is obtained from the T = 0  limit of  Eq. (3.13): 

~o = Y. ( e p - ~ ) o ( u - e , ) =  -(2/5)uNoo 
P'" (5.1) 

N'oo = -(OI2o/OP)r = (v/3~2)(2mla/h2) 3/2 

Since fp = O( /~ -  ep), the first-order potential, Eq. (3.14), reads 

.(21 = (15/4n) rl2o, r = (Ro/p) 1/2 (5.2) 

Note that, as we are working with p instead of N, the parameter which 
appears in the V expansion is r instead of r,. Turning to the higher-order 
contributions, we see that g2,o, Eq.(3.21), also diverges when T = 0 .  
However, it is less divergent at T =  0 than at high T, since l,,(q), Eq. (3.23), 
is now of the order of q instead of (q)0: As f p ( 1 - f p ) - 0  for a step func- 
tion, q~p and ~bp both vanish in the q = 0  limit. The n factors of the 
numerator  of  I,(q) restrict each p integration to momenta  within q from 
the Fermi surface, so that 

lim I,,(q) oc (vKg) " (q/Ko)" q-O (h2qKo/m),,-i ~ q (5.3) 

where Ko=(2ml~/h2) 1/2 is the T = 0  characteristic momentum. This leads 
to 7 

g-2,D~C,,I2ofq3dq( qs%'~" (5.4) K--T - 7 J  

F4rte20 (IVoo~l'/2=(4r) ',2 
q~~ eo o ~ , \  v /_1 - K o ~ K o  (5.5) 

7To lowest order in rs, Eq. (5.5) is identical to Eq. (2.6) and the q.,0 cutoff reduces to the 
Thomas-Fermi screening wavevector, since in this limit/V0o = N and ,u = #r. as shown later. 
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The (7, are numerical prefactors. The sum of these [2,o reads 

16 2 3 q.m . 4 [ q,-o'~ . 
(5.6) 

The precise summation of these RPA terms can be obtained following Gell- 
Mann and Brueckner} j~ We note, however, that the 0-2 0 leading term can 
be obtained without calculating the C,, for n > 2: If ~ o  is finite as expected 
for physical reasons, the bracket in Eq. (5.6) has to go to zero in the q = 0  
limit. It thus produces an effective cutoff to the logarithmic singularity of 
the order of qs0. Consequently, the /2  D leaning term must be 

/2 o ~ -(16/n-') C'-r'-12 o ln(qso/Ko) (5.7) 

A straightforward calculation of I2(q), Eq. (3.20), gives Cz = 5(1 - I n  2)/8. 
As in the high-T limit, the two other second-order terms O2A and ,O2E 

(both of the order of r2), as well as all the other divergent terms appearing 
in /2,, for n >/3 (of the order of r 3 In r), are smaller than /2o for r ,~ 1. 
Consequently, the three first terms of the/2  expansion read 

f2=.~/oo/~ [ 25 2rt3 r+rt-- 52(1 - l n 2 ) r 2 1 n r + O ( r 2 ) ]  (5.8) 

5.2. Average  Energy 

By imposing K/(/I)= -012/0/~ = N, we can write/~ as 

/1 = l lv[ 1 + al ro + azr~ In r o + O(ro) ] (5.9) 

where ro = (Ro/lav) ~/2= (4/9~)~/3rs. Actually, we do not need to claculate a. 
and a2, as long as we are interested in the correlation energy leading term, 
since we have 

E ( T = 0 )  = (2 + p N  

= Qo(l~v) + (ll -- ttv)(OQo/O#)~, v + (2~(#v) + [2D(pv ) + laN + O(ro) 

= Eo + t2, (~v) + t2t,(~ v) + O(r o) (5.10) 

Eo is just the ground-state energy of N free electrons: Eo = g2o(/~v) + Nltv  = 
(3/5) Nl~v. Equation (5.10) shows that in the T =  0 limit, the exchange and 
correlation leading term of the energy are equal to the exchange and 
correlation terms of the thermodynamic potential calculated with the 
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unperturbed chemical potential /x v, i.e., with r =  ro. We thus recover the 
well-known result 

g c o , l ( T = O ) = R o  - ~  - - + - - - ~ ( 1 - 1 n 2 ) l n r s + O ( r  ~ (5.11) 
r s 11- 

For completeness we wish to stress that if we want to go beyond the 
(ln r,) term of Eq. (5.11), it is much simpler to calculate the ground-state 
energy directly than to derive it form the thermodynamic potential. Within 

2 this direct approach, the r s term of the ground-state energy [which 
o term in Eq.(5.11)] simply originates from the corresponds to the rs 

2 part of the RPA summation. exchange second-order term and from the rs 
Within the D approach, in addition, we must take into account the ~2A 
term (which has no equivalent in the ground-state energy); we also need to 
calculate /~ up to the order of r~, to insert this result into the different 
s s .... constributions, and to collect all the r~ terms. Although the 
finite-T approach is clearly not the simplest way to get the T =  0 energy, 
the derivation of the T =  0 and high-T results using the same formalism 
allows us to see clearly the origin of the change from the e 4 In e 2 to e 3 
dependence of the correlation energy leading term. 

We can end this part by considering the correlation energy in the 
smalI-T limit. The e dependence of its leading term is directly related to the 
small-q dependence of I2(q). We have shown that I2(q) behaves as (q)l for 
T =  0 and as (q)O at high 7". In fact, a (q)O term does exist in I,,(q) once T 
is not strictly zero [see Eqs. (4.5)], the prefactor of this (q)O term canceling 
with T in the small-T limit. The summation of these (q)O terms can be per- 
formed as for high T: Eqs. (4.5)-(4.8) are still valid provided that ~7 o and 
qs are replaced by their small-T limits ~7oo and q~o. The resulting e 3 term 
of D D is 

= - U R o  ( (5.12) 

It cancels with T as expected and leads to a correlation energy term which 
reads 

At small T, the correlation energy dominant terms are thus composed 
of the e 4 In e 2 term of the T =  0 limit (with a T-dependent prefactor) plus 
this Te 3 term. We see that this new term starts to play a role for kB T/lxv >>- 
~. , .  In rs. 
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6. C O N C L U S I O N  

We have rederived the Coulomb energy expansion at finite tem- 
perature starting from scratch, i.e., using only statistical physics first 
principles. In both the high-T and the T =  0 limits, we recover the first two 
leading terms of this energy in a simple way. At high T we find that for 
p ,~ min(l,  r,).r kB T~> max(Ro,/aF "-- Ro/r~) the average Coulomb energy 
reads 

I pZ 
gcou,(T) = R o -0 .239 -w-0 .691 ~ + O ~3/2 r ;  "s \ rs /J  

(6.1) 

r, and p being the interparticle distance and thermal length in Bohr radius 
units. At T =  0, the Coulomb energy reads, for r, ,~ 1, 

gCou~(T=O)= Ro I - 0"91--~6+O.06221n rs + (6.2) 

The first term of gco,t(T), always proportional to e-', is the exchange 
energy. The second term, which is the leading contribution to the correla- 
tion energy, is proportional to e 3 for high T and to e 4 In e 2 for T =  0. It 
comes from a second-order divergent term screened by other higher-order 
divergent terms. The screening generated by this summation is nothing but 
the usual Thomas-Fermi  (resp. Debye-Hfickel) screening for degenerate 
(resp. nondegenerate) electrons. The different e 2 behaviors at low T and 
high T originate from the fact that the second-order Coulomb processes are 
more divergent for high T than for T =  0. We have also shown that a n  e 3 

term in the correlation energy does appear once T is not strictly zero, the 
prefactor of this term canceling as T in the small-T limit. 

We note that the correlation term can be larger than the exchange 
term at very high temperature (while it is always smaller at T = 0 ) .  This 
may appear surprising since correlation processes are of higher order in the 
Coulomb interaction. The importance of these correlation processes at high 
T comes from the fact that in this limit all electrons participate in small 
momentum excitations, while only electrons close to the Fermi surface are 
involved at T =  0. 
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